Generative (Mental) World Explorer

Jieneng Chen

PhD candidate, Siebel Scholar Class 2025 Dept. Computer Science, Johns Hopkins University 04/04/2025

Mental imagery

- Simple test: Close your eyes and visualize an apple.
- How vivid?

3 - You see an apple, but it looks like a solid color

4 - You see an apple, but it looks grey or black

5 - You can't see anything. You only know you are seeing an apple.

Mental rotation

Which image is the same as the original image, aside from its orientation?

Mental imagery

The experience of "seeing" (or otherwise sensing)

in the **mind's eye** without direct external sensory input.

Mental imagery

Why do different people visualize apples differently in their mind's eye?

Gestalt Psychology

- Holism: the whole is greater than the sum of its parts.
 - Structure & Part-whole relationship;
 - How the world emerges from the integration of its parts.
- Law of past experience:
 - Our perception of a apple is not solely derived from its shape, color, or size as sensory inputs; it also incorporates our past experiences and impressions of flowers.
 - Together, these elements form our holistic perception of the apple.

Generative Prior Gestalt Psychology

- Holism: the whole is greater than the sum of its parts.
- Law of past experience
- The era of **generative priors**:
 - learn the visual commonsense (e.g., holism)
 - from huge amount of data (past experience),
 - encoding high-level structural regularities, as parameters (deep learning)

Generative Priors Mental World Models

Novel view from observed view

Part-to-Whole Relationship

Why Mental Imagery/Models Matter?

- Planning with partial observation is challenging.
- Humans can imagine unseen parts of the world through a mental exploration and revise their beliefs with imagined observations.
- Such updated beliefs can allow them to make more informed decisions,
 without necessitating the physical exploration of the world at all times.

Mental Exploration

Mental Exploration Enhances Decision Making

Mental Exploration Enhances Decision Making

World models: Computational Counterpart of Mental Models

Definition: multi-sensory neural networks that offer a predictive distribution over "changes" in the world.

$$\circ p(s_t|s_{t-1},a_t)$$

• Functionality: mimic human understanding and interaction by predicting future world states (e.g., the existence, properties and location of the objects in a scene) to help agents make informed decisions.

World Models

The world model module predicts possible future world states as a function of imagined actions sequences proposed by the actor

World Models

The world model recursively predicts an estimate of the world state sequence using s[t+1] = Pred(s[t], a[t])

World Models Summary

- multi-sensory neural network that offer a predictive distribution over "changes" in the world.
 - $\circ p(s_t|s_{t-1},a_t)$

Engineering Mental World Models

- Develop generative models grounded in physical world.
- The models are capable of predicting world dynamics conditioned on actions.

Inference

- **Gather** imagined observation from (interactively) imaginative exploration.
- Planning with imagined observation.

Generative Models

Generative Models

- z : a random variable sample from normal distribution
- x: a predicted data, with the learnt distribution P(x|z)
- Ideally, we expect the output X is a real image without corruption.

Conditional Generative Models

- z: a random variable sample from normal distribution
- x: a predicted data, with the conditional distribution P(x|z,y)
- Ideally, we expect the output X is a real image without corruption.

Class-Conditioned Generative Models

Class-Conditioned Generative Models

- Class condition can have the same effect of text condition.
- Essentially, the class label of 'DOG' has the same meaning of the text 'a photo of dog'.

$$P(X|\xi, class = DOG) = P(X|\xi, 'A photo of dog')$$

Text-Conditioned Generative Models

progressed from class-conditioned to text-conditioned approaches.

 $P(X|\xi,' a boy is playing frisbee with a dog')$

Text-Conditioned Video Generative Models

- The prediction is not limited to image!
- Video includes dynamics, and thus generating video is harder.

 $P(X|\xi,'A \ kid \ throws \ a \ bubble \ into \ air')$

Limitation of Sora-like Models

- 3D consistency?
- Physical commonsense?
- Interaction?

Ground Generative Models in the Physical world

- Data collected from 3D physical world (rather than Youtube video)
- Action as condition (rather than text)
 - 'the agent is moving two meters forward'
- Predict the world dynamics

Generative World Explorer

• World initialization (§2.2): Given the initial image i_0 and a language description l_0 , the anchor 360° world view x_0 is sampled from:

$$x_0 \sim p_{\theta_1}(x \mid i_0, l_0),$$

• World transition (§2.3): Given the chosen action a_t , the next world view \mathbf{x}_t is sampled from:

$$\mathbf{x}_t = (x_t^0, x_t^1, \dots, x_t^S) \sim p_{\theta_2}(\mathbf{x} \mid x_{t-1}^S, a_t),$$

where θ_2 is a 360° panoramic video generator, t = 1, ..., T, and $x_0^S := x_0$.

• World transition (§2.3): Given the chosen action a_t , the next world view \mathbf{x}_t is sampled from:

$$\mathbf{x}_t = (x_t^0, x_t^1, \dots, x_t^S) \sim p_{\theta_2}(\mathbf{x} \mid x_{t-1}^S, a_t),$$

where θ_2 is a 360° panoramic video generator, t = 1, ..., T, and $x_0^S := x_0$.

Exploration at Any Direction

Forward Exploration (using diffusion model)

Action Control

• World transition (§2.3): Given the chosen action a_t , the next world view \mathbf{x}_t is sampled from:

$$\mathbf{x}_t = (x_t^0, x_t^1, \dots, x_t^S) \sim p_{\theta_2}(\mathbf{x} \mid x_{t-1}^S, a_t),$$

where θ_2 is a 360° panoramic video generator, t = 1, ..., T, and $x_0^S := x_0$.

Train on the Data from 3D Synthetic Engines

Realistic

Low-Texture

Indoor

Anime

Geometry

Test and Explore in Diverse Scenes

Step into the picture. Imagine the world within.

Explore

Generating Bird's-Eye Worlds

3D Consistency

Loop Consistency when Navigating in the city

Loop Consistency

Active 3D mapping through exploration

Single Image

Active 3D Mapping Through Exploration

Active 3D mapping through exploration

Connecting GenEx to Embodied AI

Embodied AI

- Definition of embodied AI:
 - The embodiment hypothesis, also known as embodied cognition, is the idea that intelligence is a result of how an agent interacts with its environment.
- Connect GenEx to Embodied AI:
 - Predict the change of environment after interaction (agent exploration).

Replacing Physical Exploration

Exploration Policy

The exploration action is decided by a policy:

$$a_t = \arg\max_{a} \pi_{explore}(a|x_{t-1}^S, I)$$

- I is the instruction that specifies the exploration mode to be either human interaction or assisted by a GPT
- x_{t-1}^{S} denotes the latest explored view from the previous step t-1.
- action $a_t = (\alpha_t, d_t)$ defines how the agent rotates its field of view with the rotation angle αt and moves forward with dt distance

Embodied Exploration: Three Modes

(c) Goal-Driven Navigation

Instruction: "Plan to move to the position of the blue car, then turn back."

Imagination-Augmented Policy

Require: • Initial observation i_0 and world initialization description l_0

- A goal *g* to answer embodied questions. *E.g*, "Danger ahead—stop or go ahead?"
- A navigation instruction *I*. *E.g*, "Navigate to the unseen parts of the environment."
- GenEx $p(\mathbf{x}_{0:T}|i_0, l_0, I)$ defined in § 2.1 and Algorithm 1.
- An embodied policy $\pi_{\theta_3}(A|o,g)$ conditioned on observation variable o and goal g.
- 1: **Gather imagined observations** with GenEx:

$$\mathbf{x}_{0:T} \sim p(\mathbf{x}_{0:T} \mid i_0, l_0, \mathcal{I})$$

2: **Select an action with imagined observations** to maximize the policy:

$$A = \arg\max_{A} \pi_{\theta}(A \mid i_0, \mathbf{x}_{0:T}, g)$$

Multi-Agent Imagination-Augmented Policy

• Step 1: Gather imagined observations by exploring the position to agent-k

$$\mathbf{x}_{0:T}^{(k)} \sim p(\mathbf{x}_{0:T} \mid i_0, l_0, \mathcal{I}_k)$$

• Step 2: Repeat Step 1 a total of K times, then imaginatively explore the resulting positions of all K agents in our generated explorable world

$$\{\mathbf{x}_{1:T}^{(k)}\}_{k=1}^{K} = (\mathbf{x}_{1:T}^{(1)}, \mathbf{x}_{1:T}^{(2)}, ..., \mathbf{x}_{1:T}^{(K)})$$

ullet Step 3: Select an embodied action A with imagined observations to maximize the policy

$$A = \arg \max_{A} \pi_{\theta_3}(A \mid i_0, \{\mathbf{x}_{1:T}^{(k)}\}_{k=1}^K, g)$$

Embodied Decision Making

Multi-Agent Imagination-Augmented Policy

Enrich real observation with imaginative observation

Method	Acc. (%)	Confidence (%)	Logic Acc. (%)
Random	25.00	25.00	-
Human Text-only	21.21	11.56	13.50
Human with Image	55.24	58.67	46.49
Human with GenEx	77.41	71.54	72.73
Unimodal Gemini-1.5	26.04	24.37	5.56
Unimodal GPT-4o	25.88	26.99	5.00
Multimodal Gemini-1.5	11.54	15.35	0.0
Multimodal GPT-40	21.88	21.16	6.25
GPT4-o with GenEx	94.87	69.21	72.11

Augment human decision making

• Augment GPT decision making

Imagination-Augmented Policy

Enrich real observation with imaginative observation

Method	Acc. (%)	Confidence (%)	Logic Acc. (%)
Random	25.00	25.00	-
Human Text-only	44.82	52.19	46.82
Human with Image	91.50	80.22	70.93
Human with GenEx	94.00	90.77	86.19
Unimodal Gemini-1.5	30.56	29.46	13.89
Unimodal GPT-4o	27.71	26.38	20.22
Multimodal Gemini-1.5	46.73	36.70	0.0
Multimodal GPT-40	46.10	44.10	12.51
GPT4-o with GenEx	85.22	77.68	83.88

Augment human decision making

Augment GPT decision making

Thank you! Question?

Acknowledgement:

Taiming Lu, Tianmin Shu, Junfei Xiao, Luoxin Ye, Jiahao Wang, Cheng Peng, Chen Wei, Daniel Khashabi, Rama Chellappa, Alan L. Yuille, and Jieneng Chen