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Mental imagery

▪ Simple test: Close your eyes and visualize an apple.

▪ How vivid?
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Mental rotation

https://www.proprofs.com/quiz-school/story.php?title=mental-rotation-task
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Mental imagery

The experience of “seeing” (or otherwise sensing) 

in the mind’s eye without direct external sensory input.
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Mental imagery

Why do different people visualize apples differently in their 

mind's eye?
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Gestalt Psychology

▪ Holism: the whole is greater than the sum of its parts.

o Structure & Part-whole relationship; 

o How the world emerges from the integration of its parts.

▪ Law of past experience: 

o Our perception of a apple is not solely derived from its shape, 
color, or size as sensory inputs; it also incorporates our past 
experiences and impressions of flowers. 

o Together, these elements form our holistic perception of the apple.
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Generative Prior Gestalt Psychology

▪ Holism: the whole is greater than the sum of its parts.

▪ Law of past experience

▪ The era of generative priors: 

learn the visual commonsense (e.g., holism) 

from huge amount of data (past experience),

encoding high-level structural regularities, as parameters (deep learning)
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Generative Priors Mental World Models 

Mental models

Mental models
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Why Mental Imagery/Models Matter?

▪ Planning with partial observation is challenging. 

▪ Humans can imagine unseen parts of the world through a mental exploration 
and revise their beliefs with imagined observations. 

▪ Such updated beliefs can allow them to make more informed decisions, 
without necessitating the physical exploration of the world at all times.
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Mental Exploration
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Mental Exploration Enhances Decision Making

Youtube: 

https://www.youtube.com/watch?v=cf4apIcnPtU&ab_channel=CenterforLanguage%26S
peechProcessing%28CLSP%29%2CJHU

https://www.youtube.com/watch?v=cf4apIcnPtU&ab_channel=CenterforLanguage%26SpeechProcessing%28CLSP%29%2CJHU
https://www.youtube.com/watch?v=cf4apIcnPtU&ab_channel=CenterforLanguage%26SpeechProcessing%28CLSP%29%2CJHU
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Mental Exploration Enhances Decision Making
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World models: Computational Counterpart of 
Mental Models

▪ Definition: multi-sensory neural networks that offer a predictive distribution 
over "changes" in the world.

o 𝒑(𝒔𝒕|𝒔𝒕−𝟏, 𝒂𝒕)

▪ Functionality: mimic human understanding and interaction by predicting 
future world states (e.g., the existence, properties and location of the objects 
in a scene) to help agents make informed decisions.
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World Models

The world model module predicts 

possible future world states as a 

function of imagined actions 

sequences proposed by the actor
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World Models

The world model recursively predicts an estimate of the world 

state sequence using
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World Models Summary

▪ multi-sensory neural network that offer a predictive distribution over 
"changes" in the world.

o 𝒑(𝒔𝒕|𝒔𝒕−𝟏, 𝒂𝒕)
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Engineering Mental World Models

▪ Develop generative models grounded in physical world.

▪ The models are capable of predicting world dynamics conditioned on 
actions.

Inference

▪ Gather imagined observation from (interactively) imaginative exploration.

▪ Planning with imagined observation.
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Generative Models
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Generative Models

▪ 𝑧 : a random variable sample from normal distribution

▪ 𝒙 : a predicted data, with the learnt distribution 𝑷(𝒙|𝒛)

▪ Ideally, we expect the output X is a real image without corruption.

𝒑(𝒙|𝒛)
𝑧
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Conditional Generative Models

▪ 𝑧 : a random variable sample from normal distribution

▪ 𝒙 : a predicted data, with the conditional distribution 𝑷(𝒙|𝒛, 𝒚)

▪ Ideally, we expect the output X is a real image without corruption.

𝒑(𝒙|𝒛, 𝒚)
𝑧

y=‘dog’
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Class-Conditioned Generative Models

𝑷 𝑿 𝝃, 𝒄𝒍𝒂𝒔𝒔 = 𝑫𝑶𝑮
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Class-Conditioned Generative Models

▪ Class condition can have the same effect of text condition.

▪ Essentially, the class label of ‘DOG’ has the same meaning of the text ‘a photo of dog’.

𝑷 𝑿 𝝃, ′𝑨 𝒑𝒉𝒐𝒕𝒐 𝒐𝒇 𝒅𝒐𝒈′𝑷 𝑿 𝝃, 𝒄𝒍𝒂𝒔𝒔 = 𝑫𝑶𝑮 = 
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Text-Conditioned Generative Models

▪ progressed from class-conditioned to text-conditioned approaches.

𝑷 𝑿 𝝃,′ 𝒂 𝒃𝒐𝒚 𝒊𝒔 𝒑𝒍𝒂𝒚𝒊𝒏𝒈 𝒇𝒓𝒊𝒔𝒃𝒆𝒆 𝒘𝒊𝒕𝒉 𝒂 𝒅𝒐𝒈′
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Text-Conditioned Video Generative Models

▪ The prediction is not limited to image!

▪ Video includes dynamics, and thus generating video is harder.

𝑷 𝑿 𝝃, ′𝑨 𝒌𝒊𝒅 𝒕𝒉𝒓𝒐𝒘𝒔 𝒂 𝒃𝒖𝒃𝒃𝒍𝒆 𝒊𝒏𝒕𝒐 𝒂𝒊𝒓′

𝝃
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Limitation of Sora-like Models

▪ 3D consistency?

▪ Physical commonsense?

▪ Interaction?
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Ground Generative Models in the Physical world

▪ Data collected from 3D physical world (rather than Youtube video)

▪ Action as condition (rather than text)

o ‘the agent is moving two meters forward’

▪ Predict the world dynamics
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Generative World Explorer







Exploration at Any Direction



Forward Exploration (using diffusion model)





Train on the Data from 3D Synthetic Engines



Test and Explore in Diverse Scenes





Generating Bird’s-Eye Worlds



3D Consistency
Baseline image-to-3D models GenEx



Loop Consistency when Navigating in the city 



Loop Consistency



Active 3D mapping through exploration



Active 3D mapping through exploration
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Connecting GenEx to Embodied AI



43

Embodied AI

▪ Definition of embodied AI:

o The embodiment hypothesis, also known as embodied cognition, is the 
idea that intelligence is a result of how an agent interacts with its 
environment.

▪ Connect GenEx to Embodied AI:

o Predict the change of environment after interaction (agent exploration). 



Replacing Physical Exploration



Exploration Policy

• The exploration action is decided by a policy:

• I is the instruction that specifies the exploration mode to be either human interaction 
or assisted by a GPT

• denotes the latest explored view from the previous step 𝑡−1. 

• action                    defines how the agent rotates its field of view with the rotation 
angle 𝛼𝑡 and moves forward with 𝑑𝑡 distance



Embodied Exploration: Three Modes



Imagination-Augmented Policy



Multi-Agent Imagination-Augmented Policy

• Step 1 : Gather imagined observations by exploring the position to agent-k

• Step 2: Repeat Step 1 a total of 𝐾 times, then imaginatively explore the 
resulting positions of all 𝐾 agents in our generated explorable world

• Step 3: Select an embodied action 𝐴 with imagined observations to maximize 
the policy



Embodied Decision Making



Multi-Agent Imagination-Augmented Policy

• Augment human decision making

Enrich real observation with imaginative observation

• Augment GPT decision making



Imagination-Augmented Policy

• Augment human decision making

Enrich real observation with imaginative observation

• Augment GPT decision making



Thank you! Question?

Acknowledgement: 
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